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Abstract

The representation of physical space has traditionally fo-
cused on keyphrases such as “Computer Science Building”
or “Physics Department” that help us in describing and
navigating physical spaces. However, such keyphrases do
not capture many properties of physical space. As with the
assignment of a keyword to describe a piece of text, these
constructs sacrifice meaningful information for abstraction.
We propose a system of spatial representation based on
richer, emergent language models that encode information
lost in keyphrase approaches. We use a mix of wearable and
ubiquitous computing environments for the construction of
these models. Wearable computers infer language models
of their hosts. These language models then act as semantic
paint over spaces in a ubiquitous computing environment.
Spaces collect this information and construct representa-
tions based on interactions with augmented humans. A pro-
totype navigation system based on this theory is presented
and compared to traditional representations.

1. Introduction

Traditionally, the semantic labeling of spaces with build-
ing or room names involves the manual task of assign-
ing some keyphrase to a space. Unfortunately, these as-
signments do not constitute a rich representation of space.
A computer science building is more than just “computer
science”; it also encompasses, to varying degress, “algo-
rithms,” “artificial intelligence,” “machine learning,” and
many other topics depending on the occupants of the build-
ing. That is, a person’s conception of a building includes
more than its structure (e.g., floor plans, lighting). Espe-
cially when familiar with the objects and people occupying
a building, a person might think of that building as some-
thing more abstract and meaningful than a collection of

generic objects and people. For example, the task of la-
beling a building would be quite difficult if we were only
given access to its structural properties. Knowledge of the
occupants provides insight when constructing a meaningful
description. When we are given the names and homepages
of the occupants, we can better assign a useful label to a
building.

We describe the development of a system of spatial rep-
resentation grounded in the interaction of people in space.
Related work in representation has been conducted in infor-
mation retrieval and collaborative filtering. In these areas,
good document or item representations are measured by an
ability to effectively rank a set of items with respect to a
query or active user. Likewise, the task of finding relevant
spaces can motivate the adoption of similar representations;
we want to rank space with respect to a description of what
we are looking for.

We explore approaches to spatial representation that rely
upon occupant-derived representation. Such a model re-
quires both a representation of the individual occupants as
well as an algorithm for constructing a representation of
the space from this information. Wearable computers pro-
vide an excellent platform for the first task. Indeed, tradi-
tional user modeling techniques deployed in a variety of do-
mains serve as a lower bound on the performance of wear-
able computers in constructing representations of individu-
als. Already, wearable computer systems have been devel-
oped which demonstrate the ability to construct fine-grained
models of individuals [5, 11]. To address the second task,
we adopt a computational partitioning of space similar to
Dataspace [7]. In this architecture, physical spaces such as
buildings or rooms maintain computational resources pro-
viding a location for accumulating knowledge. Individu-
als with wearable computers passing through these spaces
provide the personal information used to build spatial mod-
els. The problem of constructing a representation of a space
reduces to reasoning about the collection of user models
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which pass through a space.
This paper develops the idea of interaction-based spatial

representations by starting from traditional approaches to
representation. A general theory of interaction-based repre-
sentation is developed in Section 2. In order to contextual-
ize our approach to previous methods of representation, we
have organized several existing architectures into a set of
categories. Using this theory of interaction-based represen-
tations, we develop a method for constructing interaction-
based spatial representations in Section 3. In the course of
this process, we describe representational techniques pre-
viously not explored. Having developed an algorithm for
building these representations, we describe the implemen-
tation of a prototype navigation system in Section 4. We
conclude by placing our research in context and discussing
future directions in Sections 5 and 6.

2. Interaction-based Representation

Being concerned with the representation of space, we be-
gin by discussing the various methodologies of construct-
ing representations. Our focus will not be on a personal
representation of space as is explored in artificial intelli-
gence. Instead, we will prefer an approach which focuses
on the social definition of a space. So, rather than having
an agent ask, “what is this space about?”, we have the space
ask, “what am I about?” In particular, we are interested
in the representation of spaces as a product of interaction
with people. However, we will first develop a more general
method for building interaction-based representations using
previous work.

2.1 Simple Interaction

The first type of representation to consider is a simple de-
scription of what is interacting in a system of objects. There
are many dimensions upon which interaction may occur:
two people speaking (linguistic interaction), several people
being in eyesight of eachother (visual interaction), two cars
colliding (physical interaction). When considering a partic-
ular dimension, some objects are more relevant than others.
The two people in a room are more relevant during a dia-
log than, for example, the chairs these individuals are sit-
ting on. Relevance is mentioned as a means to reduce the
system which we will have to describe. Even though the
door may be semi-relevant to a dialog, such a system can
be described as two people speaking. Therefore, linguis-
tic interactions can be described by an interaction matrix of
partners in conversations. That wearable computers provide
this type of human-level monitoring partially motivates this
work and explains why many of the examples involve peo-
ple. Beyond this, however, ubiquitous computing results in
a similar potential in physical objects. For example, if cars

are augmented with collision sensors, an interaction matrix
can describe the physical interaction.

Much previous research implicitly adopts this interaction
based framework. For example, collaborative filtering and
Chalmers’ path-based information retrieval abstract infor-
mation objects (e.g. documents, movies, songs) and manip-
ulate their representations with respect to the people they
interact with [4, 1]. In these systems, people are represented
by the objects they have read, watched, or heard. Likewise,
the information objects are represented by the people who
read, watch, or hear them. Both representations ignore de-
scriptions of the components (i.e. people and items).

In terms of ubiquity, Davis, et al. develop a represen-
tation of nodes in an ad hoc wireless network with respect
to communicative interaction [6]. In such an environment,
nodes may have very limited communication range and high
mobility. Globally, the resulting network can be partitioned,
dynamic, and altogether difficult to navigate. The goal is
to find a relatively short and reliable route from one node
to another given only a destination’s identifier. Interaction
is defined by two nodes being within communication range.
Here, a particular node is represented by the history of other
nodes with which it has had possible communication. As
with collaborative filtering, a description of the components
of this representation (i.e. other nodes) is lacking.

2.2 Interaction Described

A second type of representation is possible using the de-
scriptive history of interactions an object has participated
in. We believe that there is power in describing the inter-
action itself. When people are speaking, one can describe
the system not just by who is speaking to whom but also
by what words are spoken between these individuals. When
two cars collide, one can use a range of values to describe
the collision. Consequently, a person can be represented
by the words he or she has read, written, heard, or spoken.
Likewise, a car can be described by the severity of collisions
it has been involved in.

Traditional information retrieval may be cast in this rep-
resentation scheme. The population of objects consists of
the users and their document collection. Interaction is de-
fined by reading a document and, hence, can be described
by what is read. That is, a document is only represented by
the words that flow between it and a reader (i.e. the text).
More recent information retrieval systems incorporate addi-
tional knowledge into representation. For example, hyper-
text retrieval adds inter-document interaction to representa-
tion [15, 9].

With respect to collaborative filtering, content-based
schemes incorporate linguistic knowledge about the inter-
actions beween objects and observers [13]. So, in addition
to being represented by the people who have interacted with



it, a particular item is also represented by a description of
the interaction which may be the text of a document or the
synopsis of a film.

Both of the representational schemes describe important
aspects of the system. Simple interaction tells one a lot.
But, while it gives insight into the identities of the peers, this
set alone provides nothing beyond a social context. Know-
ing the ISBN numbers of books I read and social security
number of the people I speak with tells one little about my
interests. It may, as in collaborative filtering, be able to rep-
resent interests in the abstract sense of individuals’ overlap-
ping book or dialog-peer selections. Nevertheless, if given
the text of all of the books and the linguistic histories of all
of my dialog-peers, then one may be able to better describe
my interests. Similarly, knowing who is passing through
space can tell one a lot about popularity and groups of peo-
ple. Knowledge about the set of interests of that group can
go further even if we do not know what is of particular in-
terest in that space.

3. Spatial Semantic Model

The focus in our examples on people and language is not
accidental. First, people are readily monitored and repre-
sented by wearable computers. One of the advantages of
wearable computers is their persistant existance with an in-
dividual. The interaction of these wearable computers and
other physically-bound computers allows the exploration
of the representational methodologies we described above.
Second, language grounds representation in flexible, under-
standable primitives. For our ends, a linguistic represen-
tation is useful since it allows us to build systems that are
queriable using traditional information retrieval techniques
[12, 19]. Words provide a powerful interface potential and
carry a history of academic research. Given these aspects,
we would like to build a spatial representation system which
incorporates both interaction as well as linguistic represen-
tations. We will first describe a framework for building lin-
guistic representations. Using this grounding and the ideas
developed in Section 2, we will develop a method to bind
meaningful linguistic representations to physical space.

3.1 Linguistic Representation

Wearable computers have access to a wealth of linguistic
information in the form of both text (email, web browsing,
and document composition) and speech (through speech
recoginition technology). The result is a history of words
which have passed over the user’s lips, ears, and eyes. Com-
plete histories are informative but not compact and certainly
not immediately comparable.

We propose the use of information retrieval techniques
for abstracting from collections of words. The information

retrieval community represents documents in any number of
ways: keywords, subject headings, abstracts, term vectors.
Recent advances in information retrieval have found rep-
resentational power in language models of documents [16].
The intuition with language models is that there is an under-
lying generative model for some collection of words. Word
collections act as a sample from this model and can be be
used to estimate the “true”, underlying language model. To
a certain extent, for an individual, this representation can
serve to describe a set of interests. A person who is in-
terested in computer science is more likely to speak, write,
hear, or read about “algorithms” and “artificial intelligence”
than a person who is not interested in these things at all.

3.2 Traditional Interaction-based Spatial Repre-
sentations

Since we are basing our spatial representation on inter-
action, an investigation of methods described in Section 2
is appropriate.

First, we consider the a representation based on simple
interaction. The resultant representations would be similar
to items in the collaborative filtering example or nodes in
the ad hoc routing example. A single space would be repre-
sented by a vector of individuals who have passed through
it. A collection of these spatial representations would allow
query by example like collaborative filtering or the search
for a paritcular individual like ad hoc routing. However,
neither of these features result in easy map-based interac-
tion.

We have already described the advantages of linguistic
representations in Section 3.1. Practically, though, where
does the linguistic information about a space come from?
Although it is natural to think about linguistic interactions
between people, using language to characterize interaction
with space is not obvious. Let us consider the options. If
it is claimed that there are word-based representations of
spaces, where do the representations come from? Perhaps a
linguistic interaction with a space means a linguistic inter-
action is occurring in that space. A linguistic history of a
space would be constructed from the history of words spo-
ken within that space. Basically, anything communicated
between people in a space is monitored and incorporated
into its representation. Figure 1 provides an interpretation
of the source of linguistic information. The resulting lin-
gusitic representations are based solely on the linguistic in-
teractions happening in a space. The identities of the par-
ticipants are ignored. A linguistic representation of space
built like this is reasonable but not practical. The history of
words spoken in a space is potentially sparse or misrepre-
sentative. Even though nary a word may be spoken in an
office, it can still have a representation based on the people
occupying it.
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Figure 1. Linguistic information from linguis-
tic interaction occuring in a space: The
linguistic representation of a room is con-
structed solely from the words spoken in the
room.

3.3 User-based Interaction-based Representa-
tions

The short-comings of traditional approaches to
interaction-based representation lead us to consider
novel methods of constructing such representations. One
of the disadvantages described above was the potential
sparsity in immediate linguistic information. In order to ac-
cumulate more data for our models, then, we adovocate the
construction of models based upon the linguistic represen-
tations of the people using that space. Wearable computers
provide the ability to not only monitor speech but also a
persistant monitoring of a user. It is this monitoring which
allows the construction of rich models of user linguistic
patterns. The information about the users occupying in
the space is then exploited to construct a representation
of the room itself. Figure 2 depicts the transmission of
an entire linguistic representation to the space. This user
representation includes the terms mentioned in the example
in Figure 1 as well as an individual context for those terms.

A subtle distinction between this approach and previous
approaches should be realized. Whereas the two interacive
representations described place objects in either an immedi-
ate social or information context, our spatial representation
attempts to combine the two. The linguistic representations
are constructed not from immediate interaction such as text
in a document but from the linguistic representations of the
users. This would be akin to describing a document by the
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Figure 2. Linguistic information from linguis-
tic representations of the individuals in a
space: The linguistic representation of a
room is constructed from an abstract repre-
sentation of occupants in a room. This ab-
stract representation describes a user’s set
of interests.

During each timestep,

1. wearable machines recompute linguistic repre-
sentations of their hosts

2. if a user enters a space,

(a) the new user’s wearable machine transmits
its linguistic representation to computer as-
sociated with that space

(b) the spatially-bound machine recomputes a
representation of itself based on the new
collection of linguistic user representations

Figure 3. Representation construction algo-
rithm

confluence of linguistic representations of its readers. This
is an alternative representation we assume is a close approx-
imation of immediate interaction. Even in cases where in-
formation about immediate interaction is provided, a rea-
soning about the linguistic representations of users is po-
tentially exploitable. For example, if two statistics texts are
equivalent with respect to content, knowing that one is far
more often used by computer scientists perhaps tells us that
this text is better suited for a computer science curriculum
than the other.

A space, then, accumulates knowledge about its occu-
pants in the form of these models from which composite
representations can be constructed. Components of this dis-
tribution will be reinforced if people have common inter-
ests. So, even though several people in a particular space
may be quite different, the composite representation should



For each space to be considered,

1. calculate the relevance of the space to the query

2. highlight the spaces according to this relevance
measure.

Figure 4. Representation retrieval algorithm

encompass the similarities between those representations.
In order to accomplish this with a collection of language
models, we perform a uniform combination of between of
people who have passed through a particular space. Figure 3
describes the behavior of the system construction algorithm
during execution.

The querying of a collection of spatial representations
can be thought of as analogous to reading a map for rele-
vant areas. In this case, reading is substituted by natural
language querying similar to modern information retrieval
systems. Because our spatial representations are proba-
bilistic models, we can compute the relevance of a space
as the probability of that spatial representation generating
the query. The relevance is related, then, to the likelihood
of those words having been spoken by the occupants who
passed through that space. Using our map metaphor, Figure
4 describes the retrieval algorithm.

3.4 Scenario: Alice’s Day Out

Consider the following scenario. Alice, an undergradu-
ate computer science student, owns, like everyone else, a
wearable computer which infers a linguistic representation
from her web browsing and document composing habits.
Because Alice is interested in areas such as wearable com-
puting and artificial intelligence, the language model allots
a larger probability mass to words such as “wearable,” “mo-
bile,” “learning,” and additional, related words. However,
Alice is not one dimensional so her language model as-
signs relatively high probability to terms such as “guitar,”
“tremelo,” and “flamenco.” Clearly Alice also has some in-
terest in classical guitar.

Since Alice’s environment is augmented with spatial rep-
resentation machines, rooms in her department’s building
have representations associated with the language models of
common foot traffic. So, as Alice enters her laboratory, her
wearable communicates the inferred language model to the
local spatial representation machine. The spatial represen-
tation machine then recalculates its representation based on
this new information as well as the history of language mod-
els it has been transmitted by others. Because the major-
ity of peers in Alice’s laboratory also study machine learn-
ing, the combined language model reinforces terms such as

“learning,” “training,” and so on.
This afternoon, Alice visits a university campus she is

considering for graduate school. Unfamiliar with the cam-
pus, Alice asks her wearable how to get to the machine
learning laboratory. The wearable contacts the campus di-
rectory which maintains communication with all of the spa-
tial representation machines on campus. This central direc-
tory then estimates the probability of Alice’s query being
satisfied by the different spaces. The campus directory con-
structs a campus map overlaid with color whose intensity is
relative to this probability. The map is transmitted to Alice’s
wearable. Alice notices that there is a cluster of bright red
spaces in the building next to her. A visit to the brightest
spaces results in Alice finding the machine learning labo-
ratory. Investigating other brightly colored spaces in the
building, Alice discovers that the robotics laboratory also
conducts interesting work in machine learning.

Satisfied with the machine learning research on campus,
Alice asks about guitar playing on campus. Disappointed by
the initial results (almost every building has a guitar player),
Alice specifies classical guitar playing. A small cluster of
rooms gets highlighted in a nearby building. Here, Alice
finds a music department where, apparently, flamenco is
embraced.

4. Prototype Interface

This spatial representation system is being deployed for
the Computer Science Building at the University of Mas-
sachusetts. While a department-wide adoption of wearable
computers is welcome, it is not feasible at the moment. Lin-
guistic data for occupants of the building has been synthe-
sized from publications and home pages. This data will
serve to construct language models of the occupants of the
building. However, before constructing the models, some
preprocessing was conducted. First, text extracted from
these documents was normalized by stemming according to
the KStem algorithm and dropping a list of high-frequency,
content-free stop words [10]. Terms occurring only once in
the entire collection were omitted from calculations. For
each individual in the department, his or her documents
were used to build a vector of term-frequency pairs. Simple
language models are built using the maximum likelihood
estimate,

���������
	 �� � �������� �� ����� � ���
where �� � ����� is the count in the term vector for building
occupant � . This gives us a naı̈ve language model. Unfortu-
nately, such an estimate assigns zero probability to unseen
words. This problem is addressed by by mixing the max-
imum likelihood language model with a model of general
English. In this case, a general English model is constructed



from the entire collection of documents for all users. There-
fore,

���� ��� � � 	 � � � ��� � ���������	� � ��
� ��� � � �
where

�
is a mixing parameter which we set to ����� .

A model for the second and third floors of the Computer
Science Building was then constructed to allow simulation
of occupancy. The individuals were associated with their
offices in the model. Many offices are shared, demand-
ing a combination of the language models of the occupants.
Composite language models were built by uniformly com-
bining the individual language models,

� ��� ��� ��� � 	 �� � � �������� � � �� ���
� �

where
� �

is the set of occupants in the space ! for which� �
is a model.

This semantic model of the building is constructed lo-
cally on a Xybernaut wearable computer [21]. Due to the
relatively small number of potentially relevant spaces, no
optimization of the indexing needed to be conducted. This
would be necessary in very large buildings or sets of spaces.
We designed the system for speech to allow the flexibility of
traditional information retrieval querying without the over-
head of learning to use traditional wearable keyboard alter-
natives. A user interacts with the system by issuing speech
queries recognized by IBM ViaVoice runtime libraries [20].
The set of recognized words constitutes the query. The sys-
tem then generates a relevance measure for all the spaces
in the building based upon the probability of the space’s se-
mantic model,

�"�
, generating those words:

� �$# � � � � 	 % � � �$# � � � � � �
where

#
is the sequence of query terms. These probabilities

are then used to mark up a map of the building that is pre-
sented to the user on a touch panel display. Figure 5 shows
this map for the query “robotics.” The interface presents
the user with the current state of the query, which provides
context for the results. These results are displayed in two
panels. The left-hand panel shows the relevance of spaces
in the building. The right-hand panel displays the ranked
list of relevant spaces using manually assigned labels. We
found that this list helps in rapidly characterizing the space
especially when used in conjunction with the highlighted
map. In our example, the system highlights the robotics
laboratory and offices of associated people. Interestingly,
the system also detects the interest of machine learning and
artificial intelligence laboratories in robotics.

5. User Experience

Having built a prototype system, we were interested in
the application of this visualization to the task of naviga-
tion of space. Several computer science students with vary-
ing amounts of experience in the Computer Science build-
ing were given the system to use for exploring the space.
Most users were enthusiastic about the system as a means
of reducing the overhead when investigating a new build-
ing. Traditionally when trying to determine where relevant
research is being conducted in a building, a coordination
of web-browsing and physical maps is necessary. Our sys-
tem combines this information into a single interface to al-
low more efficient navigation. Users were able to quickly
find the offices and laboratories relevant to particular in-
terests. Some also gained an awareness of previously un-
known similarities between laboratories. Most participants
were largely disappointed with speech recognition perfor-
mance which resulted in longer search times. One user rec-
ommended the option for query reformulation so that the
map state would change as terms were added to a query.

6. Related Work

With respect to representation, our approach is quite
similar to stigmergetic or pheromone-based algorithms [3].
These systems harness the distributed, socially-constructed
representation of traffic on a network for problems such
as finding shortest paths. Important to these algorithms is
the notion of agent leaving markers at geographic locations
and having representations emerge as a result of the marker
accumulation. Our work in spatial representations demon-
strates the application of this theory to domains outside of
networking.

As an architecture, the Dataspace model comes closest to
the system we describe [7]. While Dataspace describes at a
high level how to partition and query spaces, the authors do
not describe how the information in such a system comes to
reside where it does. We consider our system to be an ini-
tial attempt at exploiting such an architecture in information
retrieval.

Brown’s work with stick-e notes is also related in the as-
cription of data to spaces [2]. Stick-e notes are text data
stored in spaces. This text is broadcast to a computer user if
certain contextual information is satisfied. Individuals may
then leave similar notes for others traveling through such an
augmented space. It is this latter part which we are automat-
ing so that instead of transmitting a text message, a user
transmits a complex representation. Coincidentally, it is not
impossible for a spatial machine in our system to broad-
cast its own representation to users passing through. This
message encodes not only a spatial representation but also a
potential user context. For example, many researchers have
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Figure 5. Spatial search results for the query “robotics”: The left-hand panel displays the relevant
spaces graphically. The right-hand panel displays a ranking of relevant spaces using manually
assigned labels.

described information retrieval systems which incorporate
contextual information such as location or room occupants
[8, 17]. This information retrieval system could seamlessly
consider spatial context in the form of the models that we
present.

Several recent artificial intelligence approaches to rep-
resentation attempt to learn meaning based on the co-
occurrence of spoken words and physical objects [14, 18].
These techniques reinforce specific word-sensor associa-
tions in an attempt to learn word meaning. The negotiated
representation resides in the heads of the individual agents
operating within the environment. In other words, the arti-
ficial intelligence community is interested in a vertical ap-
proach to intelligence by focusing on the construction of a
highly sophisticated agent or group of agents acting in dy-
namic physical environments. In some ways, our work is an
inversion of these artificial intelligence initiatives. The sys-
tem attempts to learn object meaning by placing the repre-
sentation into the object itself. Hence, we are interested in a
horizontal approach to intelligence by focusing on the con-
struction of sophisticated dynamic physical environments.
Agents hold no privileged place.

7. Conclusion

We have presented a system to construct rich, emergent
spatial representations. The representations result in mean-
ingful spaces and aid in visualization and navigation. In
designing the representational system, a novel method for
approximating immediate linguistic representation was de-
veloped.

There are several extensions to the system we are cur-
rently considering. The temporal and dynamic aspects of
these emergent representations remain unexplored. Realis-
tic movement models would be necessary for these exper-
iments. We are investigating the acquisition of empirical
movement data for the faculty and students in our system.
By incorporating movement into our model of the build-
ing, spatial representations can be constructed using differ-
ent transformations on the interaction histories. For exam-
ple, considering only the a short, recent history of people
occupying a space may reduce the accuracy of the repre-
sentation but will make the representation more robust to
the dynamism of shared spaces.

While the prototype system holds promise, limitations
exist. The type of queries possible is limited by the amount
of representational power in text information related to a
space. For example, it is unlikely that the system would
work well on queries for subway stations, restaurants, or



other public places. The people occupying these places are
too diverse. Inferring meaningful representations for these
spaces from individuals’ language data may not be possible
but we believe useful linguistic histories exist somewhere in
the environment.

Wearable computers provide the ability to model a vast
amount of user interaction beyond words. Several initia-
tives to model context reveal the ability to model abstract
states such as “walking” or “sitting” [5, 11]. One can imag-
ine other abstract states such as such as “hammering”. If
such states were communicated to objects in the environ-
ment, then we could also imagine representing objects by
the ways they have been used. For example, a hammer
would most often be used for hammering though a shoe may
also used for the same task. An agent confronted with the
need to hammer would not have to reason about the ham-
mering properties of objects in the environment. Instead,
it may merely seek those objects whose representations in-
clude hammering.
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